Object category learning and retrieval with weak supervision
نویسندگان
چکیده
We consider the problem of retrieving objects from image data and learning to classify them into meaningful semantic categories with minimal supervision. To that end, we propose a fully differentiable unsupervised deep clustering approach to learn semantic classes in an end-to-end fashion without individual class labeling using only unlabeled object proposals. The key contributions of our work are 1) a kmeans clustering objective where the clusters are learned as parameters of the network and are represented as memory units, and 2) simultaneously building a feature representation, or embedding, while learning to cluster it. This approach shows promising results on two popular computer vision datasets: on CIFAR10 for clustering objects, and on the more complex and challenging Cityscapes dataset for semantically discovering classes which visually correspond to cars, people, and bicycles. Currently, the only supervision provided is segmentation objectness masks, but this method can be extended to use an unsupervised objectness-based object generation mechanism which will make the approach completely unsupervised.
منابع مشابه
Simultaneous Object Detection and Ranking with Weak Supervision
A standard approach to learning object category detectors is to provide strong supervision in the form of a region of interest (ROI) specifying each instance of the object in the training images [17]. In this work are goal is to learn from heterogeneous labels, in which some images are only weakly supervised, specifying only the presence or absence of the object or a weak indication of object l...
متن کاملA Visual Category Filter for Google Images
We extend the constellation model to include heterogeneous parts which may represent either the appearance or the geometry of a region of the object. The parts and their spatial configuration are learnt simultaneously and automatically, without supervision, from cluttered images. We describe how this model can be employed for ranking the output of an image search engine when searching for objec...
متن کاملObject Localization with Boosting and Weak Supervision for Generic Object Recognition
This paper deals, for the first time, with an analysis of localization capabilities of weakly supervised categorization systems. Most existing categorization approaches have been tested on databases, which (a) either show the object(s) of interest in a very prominent way so that their localization can hardly be judged from these experiments, or (b) at least the learning procedure was done with ...
متن کاملUnsupervised Learning of Probabilistic Object Models (POMs) for Object Classification, Segmentation, and Recognition Using Knowledge Propagation Citation
We present a method to learn probabilistic object models (POMs) with minimal supervision, which exploit different visual cues and perform tasks such as classification, segmentation, and recognition. We formulate this as a structure induction and learning task and our strategy is to learn and combine elementary POMs that make use of complementary image cues. We describe a novel structure inducti...
متن کاملWindow-Object Relationship Guided Representation Learning for Generic Object Detections
In existing works that learn representation for object detection, the relationship between a candidate window and the ground truth bounding box of an object is simplified by thresholding their overlap. This paper shows information loss in this simplification and picks up the relative location/size information discarded by thresholding. We propose a representation learning pipeline to use the re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1801.08985 شماره
صفحات -
تاریخ انتشار 2017